
Status and trends in the structure of Arctic

benthic food webs

Monika Ke ̨dra 

Institute  of  Oceanology Polish Academy of  Sciences,  Powstancow Warszawy 55,  PL-81-712

Sopot,  Poland;  Chesapeake  Biological  Laboratory,  University  of  Maryland  Center  for

Environmental Science, P.O. Box 38, Solomons, MD 20688, USA

Charlotte Moritz 

Institut des Sciences de la Mer, Universite du Quebec й Rimouski, 310 allee des Ursulines,

Rimouski,  Quebec  G5L  3A1,  Canada;  Centre  de  Recherches  Insulaires  et  Observatoire  de

I’Environnement  3278,  National  Center  for  Scientific  Research,  Ecole  Pratique  des  Hautes

Etudes, University of Perpignan Via Domitia, BP1013, 98729 Papetoai, Moorea, French Polynesia

Emily S. Choy 

Alfred Wegener Institute, Am Handelshafen 12, DE-27570 Bremerhaven, Germany

Carmen David 

Department  of  Biological  Sciences,  University  of  Manitoba,  Winnipeg,  Manitoba R3T 2N2,

Canada

Renate Degen 

Alfred Wegener Institute, Am Handelshafen 12, DE-27570 Bremerhaven, Germany

Steven Duerksen 

Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

Ingrid Ellingsen 

SINTEF Fisheries and Aquaculture Brattorkaia 17C, N0-7010 Trondheim, Norway

Barbara Górska 

Institute  of  Oceanology Polish Academy of  Sciences,  Powstancow Warszawy 55,  PL-81-712

Sopot, Poland

Jacqueline M. Grebmeier 

Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science,

P.O. Box 38, Solomons, MD 20688, USA

Dubrava Kirievskaya 

Research  Center,  Novgorod  State  University,  Bolshaya  St.  Petersburgskaya  uL,  41,  Veliky

Novgorod, 173003, Russia

Dick van Oevelen 

Royal  Netherlands  Institute  for  Sea  Research,  Yerseke  Ecosystem  Studies,  P.O.  Box  140,

NL-4400 AC Yerseke, The Netherlands

Kasia Piwosz 

National  Marine  Fisheries  Research  Institute,  Department  of  Fisheries  Oceanography  and

Marine Ecology, ul. KoHqtaja 1, PL-81-332 Gdynia, Poland

Annette Samuelsen 

Nansen  Environmental  and  Remote  Sensing  Center,  Hjort  Centre  for  Marine  Ecosystem

Dynamics, Thormoelensgate 47, N0-5006, Bergen, Norway

Jan Marcin Węsławski 

Institute  of  Oceanology Polish Academy of  Sciences,  Powstancow Warszawy 55,  PL-81-712

Sopot, Poland

Polar Research, 2015, 34, С. 1-15 http://

dx.doi.org/10.3402/polar.v34.23775 

Опубликована: Май 20, 2015 
 

1

http://dx.doi.org/10.3402/polar.v34.23775
http://dx.doi.org/10.3402/polar.v34.23775


Аннотация

Ongoing climate warming is causing a dramatic loss of sea ice in

the  Arctic  Ocean,  and  it  is  projected  that  the  Arctic  Ocean  will

become seasonally  ice-free  by  2040.  Many  studies  of  local  Arctic

food  webs  now  exist,  and  with  this  review  paper  we  aim  to

synthesize these into a large-scale assessment of the current status

of knowledge on the structure of various Arctic marine food webs

and  their  response  to  climate  change,  and  to  sea-ice  retreat  in

particular.  Key  drivers  of  ecosystem  change  and  potential

consequences  for  ecosystem  functioning  and  Arctic  marine  food

webs are identified along the sea-ice gradient, with special emphasis

on the following regions:  seasonally  ice-free Barents  and Chukchi

seas, loose ice pack zone of the Polar Front and Marginal Ice Zone,

and permanently  sea-ice  covered  High  Arctic.  Finally,  we  identify

knowledge gaps in different Arctic marine food webs and provide

recommendations for future studies.

Ключевые слова: climate change, Arctic, trophic transfer, sea-

ice retreat, pelagic-benthic coupling, food web 
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The  Arctic  Ocean  is  experiencing  significant  warming  of

approximately  three times the global  average (Steele  et  al.  2008;

Serreze  et  al.  2009;  Polyakov  et  al.  2010)  and,  despite  a  very

pronounced  seasonality,  recent  winter  warming  far  exceeds  that

occurring  in  summer  (Screen  &  Simmonds  2010).  One  of  the

characteristic  features  of  the  Arctic  Ocean  is  sea  ice,  present

permanently at high latitudes and seasonally at lower latitudes in

winter  (Fig.  1).  The  most  conspicuous  sign  of  warming  is  the

dramatic  loss  of  sea  ice  (Higgins  &  Cassano  2009;  Parkinson  &

Comiso 2013): its summer extent has decreased by nearly 50% over

the  past  decade  (Fig.  1),  and  the  Arctic  Ocean  has  undergone  a

regime  shift  from  multi-year  ice  to  largely  seasonal  and  much

thinner  ice  cover  (Comiso,  2012). The  Arctic  Ocean  may  become

seasonally  ice-free  by  as  early  as  2040  (Polyakov  et  al.  2010).

Reductions in sea-ice cover are being further amplified by increased

heat fluxes into the Arctic Ocean through the Bering (Woodgate et al.

2006; Woodgate et al. 2010; Woodgate et al. 2012) and Fram straits

(Piechura  &  Walczowski  2009).  This  enhanced  ocean  temperature

further delays the growth of sea ice in the fall (Steele et al. 2008). In

terms  of  ecosystem  functioning,  these  patterns  indicate  a  shift

towards an earlier spring transition between sea-ice-covered and sea-

ice-free conditions (Grebmeier,  Overland et  al.  2006;  Steele et  al.

2008). Therefore, in the Arctic, climate change is not only affecting

the physical structures such as sea ice, but is also responsible for

multiple  ecological  changes  on  ecosystem  functioning,  including

food-web structure,  stability  and efficiency,  especially  by affecting

components at the base of the food web.

The two main sources of primary production in Arctic ecosystems

are  sea-ice  algae  and  phytoplankton  (Soreide  et  al.  2006).  The

growth of both ice algae and phytoplankton takes place within a one

to four month period during spring and summer (Soreide et al. 2006;

Renaud, Carroll et al. 2008; Iken et al. 2010). The productive season

starts  at  the  end  of  the  polar  night  with  sunlight  triggering  the

bloom of sea-ice algae. Even though they constitute only a small-to-

moderate  portion  (  <20%)  of  total  annual  primary  production

(Hegseth  1998;  Gradinger  2009),  ice  algae  contribute  to  Arctic

benthic food webs during springtime on shallow continental shelves

with  seasonal  ice  cover  because  they  occur  early  and  sink  fast

following  sea-ice  retreat  (Hobson  et  al.  1995;  Tamelander  et  al.

2006). This ice algal contribution is proportionally more important in

areas  where  sea-ice  cover  lasts  later  in  the  year  (Gosselin  et  al.

1997) but is expected to decrease with current sea-ice retreat (Leu

Monika Ke ̨dra, Charlotte Moritz и другие.
"Status and trends in the structure of Arctic
bent…"  

 

3



et  al.  2011).  A  phytoplankton  spring  bloom follows  the  ice  algae

bloom as the sea-ice cover melts (Leu et al. 2011). In the summer,

limited nutrients support a low phytoplankton biomass (Wassmann &

Reigstad  2011),  with  episodic  bloom  conditions  facilitated  by

occasional  nutrient  availability  (Grebmeier,  Cooper  et  al.  2006).

These phytoplankton blooms,  although responsible for  the bulk of

annual  production,  are usually  restricted to  open waters  (but  see

Arrigo et  al.  2012; Mundy et  al.  2014).  Boetius et  al.  (2013) also

showed that  sinking ice algae aggregates constitute an important

food  input  to  benthos  in  the  Arctic  basins.  In  addition  to

phytoplankton  and  ice  algal  production,  microbial  oceanic

phototrophs  can  contribute  up  to  50%  of  total  inorganic  carbon

assimilation and play a leading role in nutrient cycling (Falkowski et

al. 1998). Bacterial primary production ratios have been estimated to

reach more than 240% above 81°N (Rich et al. 1997) compared to

1-143% (32 + 6%) in the Barents Sea (Sturluson et al. 2008). The

bacterial  contribution  to  respiration  in  the  water  column may  be

substantial: 3-60% in the Chukchi Sea and Canada Basin, and 25%

on average in the Arctic (Kirchman et al. 2009). Moreover, bacterial

activity  on  sinking  particles,  an  important  habitat  that  harbours

distinct  communities of  Arctic  bacteria (Hansell  & Ducklow 2003;

Hodges et al. 2005), directly affects the quantity and quality of the

organic  matter  that  reaches  the  seafloor.  In  coastal  areas  and

interior  shelves,  coastal  erosion,  river  and  glacial  discharge  can

become important sources of terrestrial organic matter that can also

be further utilized in benthic food webs (Dunton et al. 2006; Dunton

et al. 2012; K^dra et al. 2012; Kulinski et al. 2014).

The quality and quantity of primary production, including ice algae

and phytoplankton, reaching the seafloor have a strong impact on

benthic  communities  (Pearson  &  Rosenberg  1978),  which  further

cascades  through  the  whole  food  web,  especially  in  the  highly

seasonal  Arctic  marine  ecosystems.  Shallow  Arctic  shelves  in

particular are characterized by tight pelagic-benthic coupling due to

low grazing in the water column during the bloom (Grebmeier et al.

1988;  Grebmeier  &  McRoy  1989;  Renaud,  Carroll  et  al.  2008;

Tamelander  et  al.  2008).  This  results  in  large  export  of  organic

matter,  produced  in  the  surface  layers  and  descending  to  the

seafloor and benthos (Grebmeier, Cooper et al. 2006), especially in

spring,  when  production  is  far  greater  than  zooplankton

consumption (Tamelander et al. 2006). For example, almost 70% of

the organic carbon produced in the water column during spring in

the Pacific Arctic region reaches the seafloor (Walsh et  al.  1989),
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supporting  high  biomass,  abundance  and  diversity  of  benthic

organisms  (Grebmeier  &  McRoy  1989;  Grebmeier,  Cooper  et  al.

2006;  Iken et  al.  2010;  Bluhm, Gradinger et  al.  2011),  which are

important prey items for higher trophic level animals foraging on the

seafloor, including diving sea ducks (Merginae), bearded seals (Erig

nathus barbatus), walrus (Odobenus rosmarus) and grey whales (Es

chrichtius robustus) (Lowom et al.  2003; Grebmeier, Cooper et al.

2006;  Grebmeier  &  Barry  2007;  Grebmeier  2012).  This  contrasts

with  the  summer  period,  when  grazing  of  phytoplankton  by

zooplankton may reach up to 97% of  daily  water column primary

production  in  more  pelagic-oriented  areas  like  the  Barents  Sea

(Tamelander et al. 2006), thus limiting carbon export to the benthos.

During summer, reworked organic matter consisting of zooplankton

faecal  pellets  and  carcasses,  moults  and  bacteria,  as  well  as

phytodetritus, primarily fuels benthic food webs. Many shallow shelf

Arctic systems, especially in the Pacific Arctic, have a high efficiency

of energy transfer from the water column to the benthos (Ambrose &

Renaud 1995). Macro- and megafauna appear to play a prominent

role in carbon recycling (up to 30% efficiency for Arctic  benthos;

Clough et  al.  2005;  Renaud et  al.  2007),  but  studies  focusing on

partitioning  of  carbon  recycling  for  bacterial,  meio-  faunal,

macrofauna and megafaunal components are rare (Piepenburg et al.

1995).
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Trophic  transfer  efficiency  describes  the  efficiency  with  which

energy is transferred from one trophic level to the next, in particular

the  relative  percentage  of  primary  production  that  reaches  top

predators (Kozlovsky 1968). Species interactions, of which many are

sea-ice related in Arctic ecosystems (Fortier et al. 2002; Gradinger &

Bluhm 2004; Soreide et al. 2006; Gradinger 2009), control energy and

organic matter flow which determine ecological efficiencies and can

limit  productivity and patterns of  species dominance and food-web

stability (McCann 2000). In the changing Arctic Ocean, species shifts

and  local  extinctions  and  invasions  may  occur,  leading  to  new

interactions between species that have not co-evolved (Hobbs et al.

2006).  New or missing links in established food webs may lead to

large  energy  inefficiencies,  changes  in  energy  pathways  that

currently support key top predators, and destabilization of food-web
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dynamics (Vander Zanden et al. 1999; Pauly et al. 2002). However,

this process is also dependent on the level of trophic and functional

redundancy in a system (Layman et al. Understanding how Arctic food

webs  will  become  structured  in  the  future  will  therefore  entail

disentangling  the  factors  with  most  impact  on  interspecific

interactions.

The aim of this paper is to present the current status of knowledge

of the structure of various Arctic marine benthic food webs and their

observed responses to ongoing climate change, in particular to sea-

ice retreat. Potential changes to food-web trophic transfer efficiency

are also discussed. To date, most focused studies of Arctic food webs

are limited in space, time or taxonomic level (e.g., Iken et al. 2005;

Aydin & Mueter 2007; Bergmann et al. 2009; Megrey & Aydin 2009;

Iken et al. 2010; Feder et al. 2011; Dunton et al. 2012; Whitehouse

et  al.  2014),  and  large-  scale  syntheses  across  the  Arctic  are

generally  missing.  Only  a  few  pan-Arctic  reviews  have  been

published  (Carmack  &  Wassmann  2006;  Piepenburg  et  al.  2011;

Wassmann et al. 2011), and none has focused on species interactions

and trophic pathways of food webs nor on food-web structure and

with trophic transfer efficiency. To complement existing studies, this

review will  focus on the key drivers of  ecosystem changes in the

Arctic,  including sea-ice decline,  temperature rise and changes in

stratification  and  the  consequences  for  important  ecosystem

functions  that  are  susceptible  to  change,  including  nutrient

regeneration,  primary  and  secondary  production,  pelagic-benthic

coupling,  structure  of  food  webs  and  consequences  for  top

predators.  In  particular,  we  aim  to:  (I)  identify  key  drivers  of

ecosystem  change  and  potential  consequences  for  ecosystem

functioning;  (2)  present  different  scenarios  and  trends  in  Arctic

marine  food  webs  by  analysing  regional  ecosystem  case  studies

located along a sea-ice gradient: the seasonally ice-free Barents Sea

and  Chukchi  Sea,  the  loose  ice  pack  Polar  Front  (PF)  and  the

Marginal Ice Zone (MIZ) and the permanent ice-covered High Arctic;

and (3)  identify  knowledge gaps in  Arctic  marine food webs,  and

suggest  possible  methods  to  fill  these  gaps  and  provide

recommendations for future studies.
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Primary and secondary drivers of

ecosystem change: potential

consequences

Key drivers of ecosystem change

The  primary  driver  of  the  observed  ecosystem  change  in  high

latitudes  is  ongoing  climate  change,  and  warming  in  particular

(Symon et al. 2005). Increasing air temperature is the main cause of

sea-ice decline, along with the secondary drivers of Arctic ecosystem

change,  such  as  increase  in  sea-water  temperature  and  altered

stratification (Symon et al. 2005; Stocker et al. 2013). Sea ice is a

major  regulating  component  in  controlling  pelagic  and  benthic

production through modulating water column stratification and light

fields  (Bluhm  &  Gradinger  2008;  Gradinger  2009)  because  it

controls the exchange of heat between the atmosphere and ocean

and, together with snow cover, limits the penetration of light into the

water column. Also, in the Arctic Ocean, the thaw-freeze cycle of sea

ice and large freshwater riverine inputs result in pronounced haline

stratification within the surface layer (Carmack & Wassmann 2006).

Shortly after the phytoplankton spring bloom, the polar mixed layer

becomes and remains nitrogen-depleted because of strong vertical

stratification,  which  prevents  replenishment  during  the  summer

season (Tremblay et  al.  2008).  Analysis  of  model  data shows that

when less sea ice is produced and freshwater load is increasing in

the Arctic Ocean, the water column stratification becomes stronger,

which decreases winter mixing (Slagstad et al. 2011), subsequently

affecting nutrient distribution in the water column (11 et al. 2009;

Codispoti  et  al.  2013;  Matrai  et  al.  2013).  In general,  patterns of

nutrients availability in the euphotic zone are a function of the total

transport  at  the  Barents  Sea  Opening  and  Fram  Strait,  through

Davis Strait  in the Canadian Archipelago and Bering Strait  in the

Pacific  Arctic  region,  along  with  nutrient  input  from  rivers,

upwelling,  stratification  patterns  and  local  mixing  of  deep  water

(Codispoti et al. 2013). Both major sources of nutrients in the Arctic

Ocean, oceanic inputs associated with waters of Pacific and Atlantic

origin,  and  riverine  nutrient  fluxes,  are  likely  to  change  with

accelerating climate change (Peterson et al. 2002; McClelland et al.

2006; Peterson et al. 2006; Shiklomanov & Lammers 2009). Changes

in riverine freshwater runoff will likely be associated with changes in

the quality and quantity of the nutrient supply, and while the loads of
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silicate, phosphate and dissolved and particulate organic matter are

expected to increase in the future, trend in riverine nitrogen loads

remain largely unknown (Frey et al. 2007; Raymond et al. 2007; Frey

&  McClelland  2009).  Differences  between  nutrient  transport  and

availability over the shelf areas and central Arctic may increase in

the  future:  the  already  nutrient-depleted  central  Arctic  Basin  will

likely become more oligotrophic,  while  shelf  areas will  be further

enriched by increased transport of Atlantic and Pacific water masses

and  runoff.  Biogeochemical  processes  and  changes  in  adjacent

basins  as  well  as  circulation  changes  may  affect  the  future

productivity of the Arctic Ocean.

Primary production and its consumers

Alterations  of  the  seasonal  cycle  of  primary  productivity  at  the

base of the food web is one of the most important consequences of

rising temperature, sea-ice retreat and

changes  in  nutrient  patterns.  In  general,  ice  algae  and  pelagic

phytoplankton production occur sequentially  during the year,  with

the  abundance  of  ice  algae  relative  to  pelagic  phytoplankton

increasing northward coincident with greater sea-ice cover (Leu et

al. 2011; Wassmann et al. 2011; Rubao et al. 2013). Although light

availability  and  nutrients  are  often  the  prime  limiting  factors  for

primary production (Gradinger 2009; Leu et al. 2011), the timing of

pelagic phytoplankton blooms is likely controlled by sea-ice retreat,

whereas the timing of ice algae blooms is influenced by snow and

sea-ice  melt  and  starts  earlier  than  open-water  blooms.  In  many

Arctic marginal seas, the timing of sea-ice retreat may have a strong

impact on the timing of phytoplankton production, but little or no

impact on the timing of ice algae peaks. Changes in the timing of

maximum phytoplankton production influence the variability in time-

lags  between  ice  algal  and  phytoplankton  production  peak

production (from 45 to 90 days; Ji  et al.  2013). The timing of the

seaice  algal  bloom  is  an  important  driver  of  spring  secondary

production as earlier ice algae bloom will export larger amounts of

primary  production  to  seafloor  communities  (Gradinger  1995),

especially when water column grazing is low, strengthening pelagic-

benthic coupling processes. Changes in timing of the pulses of ice

algae and phytoplankton primary production and in the associated

gap  period  between  them  will  influence  zooplankton  grazer

abundances  and  activities  (Soreide  et  al.  2010;  Varpe  2012).

Although the timing of primary production varies greatly over time

and  space  in  different  regions,  systematic  shifts  in  the  timing  of
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production and export processes have the potential to increase the

frequency  of  mismatch  between  marine  grazers  and  their  food,

which in turn can subsequently alter the organic matter flux to the

seafloor and/or the transfer to the higher trophic levels (Rubao et al.

2013).

Because Arctic zooplankton reproduction is largely determined by

the food quality of autotrophs (Muller- Navarra 2008), production of

lipids in sea-ice diatoms early in the season is extremely important

(Falk-Petersen et al. 2009; Soreide et al. 2010). These high-energy

lipid compounds are rapidly transferred through the Arctic marine

food chains.  Changes in the initiation and duration of  the growth

season, and therefore in the timing, quality and quantity of sea-ice

blooms, will directly affect, among others, calanoid copepods (Ji et

al. 2012), which are critical to energy transfer between lower and

higher  trophic  levels.  Diatom  lipids  are  accumulated  in  large

amounts  by  Calanus species  and  ice  amphipods,  and  further

transferred  to  pelagic  carnivorous  zooplankton  and  pelagic  fish

stocks (Scott et al. 1999; Scott et al. 2001; Auel et al. 2002). Lipid

levels  increase  from  10-20%  in  phytoplankton  to  50-70%  in

herbivorous zooplankton and ice fauna that then become available as

nutritious prey items for upper trophic level consumers (Daase et al.

2014).  Dominant  Arctic  zooplankton  taxa,  like  Calanus  glacialis,

switch from a diet of ice algae in spring towards phytoplankton in

late  summer,  while  others,  like  the  sympagic  amphipod Apherusa

glacialis, feed mainly on ice algae during early spring (Falk-Petersen

et  al.  1999;  Scott  et  al.  1999;  Falk-Petersen  et  al.  2006).  Ice-

associated amphipods Onisimus spp. switch from ice algae in spring

to an omnivorous diet by the end of the productive season (Werner &

Auel 2005). The young ice amphipod Gammarus wilkitzkii feeds on

ice  algae,  while  their  adults  have  a  carnivorous  diet,  feeding

preferentially on calanoid copepods (Scott et al. 2001; Werner et al.

2002). Although most benthic species do not feed directly on algal

cells, changes in the timing and quality of bloom sedimentation (the

latter additionally influenced by microbial  processing) may impact

those  species'  composition  and  abundances  (Ambrose  &  Renaud

1997).  Changes  in  the  availability  or  abundance  of  ice  algae  or

dependent zooplankton communities may cause cascading impacts

on higher trophic level populations.

Microbial processes

Earlier  sea-ice  melt  and  increased  stratification  of  the  water

column will promote picophytoplankton occurrence. Because of their
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short  generation  times,  microorganisms  respond  quickly  to

environmental changes and are the first to react to global changes,

affecting  key  ecosystem  functions  at  the  base  of  food  webs

(Sarmento et al. 2010). Significant changes in microbial communities

and diversity have already been observed after a sharp decline of

sea-ice cover in September 2007 (between 2002 and 2010; Comeau

et al. 2011). Increased carbon supply from pelagic productivity and

riverine discharge coupled with increased bottom water temperature

could result in higher bacterial activity and rates of bacterial cycling

of  carbon (Kritzberg et  al.  2010;  Vaquer-Sunyer et  al.  2010).  The

decreased  quality  and  quantity  of  sinking  particles  (Wassmann &

Reigstad  2011)  and  usable  carbon  (Renaud,  Morata  et  al.  2008)

being exported to the seafloor would decrease the efficiency of food

webs. Picophytoplankton is believed to be relatively inaccessible as a

prey  for  mesozooplankton  (Li  et  al.  2009);  however  some studies

suggest  that  protozoans  may  constitute  a  larger  percentage  of

copepod diets  (Campbell  et  al.  2009),  even up to  80-90%, during

summertime,  when  abundances,  biomass  and  production  are

dominated by pico- and nanophytoplankton (Piwosz et al. 2009; De

Laender et al.  2010; Piwosz et al.  2015) and when abundances of

microzooplankton  are  high  (Kubiszyn  et  al.  2014).  In  herbivore-

limited systems, copepod production is therefore closely linked with

protozoan  production  and  constitutes  a  direct  link  between  the

microbial loop and higher trophic levels (Campbell et al. 2009; Sherr

et al. 2009; De Laender et al. 2010; Nelson et al. 2014). Still, it is

likely  that  Arctic  food  webs  will  lengthen  at  their  base  with  the

increase in numbers of trophic transfers within the microbial food

webs or the number of grazers in the water column, decreasing the

amount  of  carbon  available  for  the  higher  trophic  levels  in  the

original food chain.

Our  knowledge  of  the  possible  impact  of  viruses  and  parasitic

protists in terms of their capacity to terminate algal blooms in the

Arctic is limited (Nelson et al. 2014). Viral infection has been shown

to  control  blooms of  the  coccolithophore  Emiliania  huxleyi in  the

Northern Atlantic (Wilson et al. 2002), while parasitic protists in the

order  Syndiniales  have  been  coupled  with  collapses  of  blooms  of

dinoflagellate species in the Mediterranean Sea (Chambouvet et al.

2008).  Increased  impact  of  algal  viruses  and  parasites  would

decrease  the  amount  of  food  available  for  pelagic  and  benthic

grazers.  How these processes  affect  current  blooms in  the  Arctic

Ocean  remains  largely  unknown,  but  both  viruses  and  parasitic

Syndiniales have been reported from sea ice (Wells & Deming 2006;
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8achy  et  al.  2011;  Collins  &  Deming  2011;  Comeau  et  al.  2013;

Piwosz et al. 2013) and the water column (Howard- Jones et al. 2002;

Lovejoy et al. 2006; 8achy et al. 2011; Comeau et al. 2011; Payet &

Suttle 2013).

Pelagic-benthic coupling

The initiation of sea-ice retreat is important for the timing, quality

and amount  of  primary production (Springer et  al.  1996;  Hunt  &

Stabeno  2002),  and  changes  in  the  timing  of  both  ice  algae  and

phytoplankton primary production may cause changes in food webs

by influencing the standing stock of zooplankton, which will in turn

affect the direct, ungrazed deposition of phytoplankton (Cooper et al.

2002) and subsequently benthic species (Overland & Stabeno 2004;

Grebmeier,  Cooper  et  al.  2006;  Grebmeier,  Overland  et  al.  2006;

Nelson et al. 2009; Grebmeier 2012). In areas with reduced summer

sea ice, pelagic grazing pressure will be higher (Lalande et al. 2007),

perhaps altering sedimentation of organic matter, resulting in more

pelagic-oriented systems. With increased primary production (Arrigo

& van Dijken 2011; Arrigo et al. 2014; Palmer et al. 2014), pelagic

food  webs  could  become  more  productive  and  intercept  more

organic matter before it reaches the seafloor (Renaud, Carroll et al.

2008); however, nutrient limitation may halt this process. Increased

grazing  would  reduce  the  export  flux  of  carbon  to  the  seafloor,

weakening  pelagic-  benthic  coupling  processes.  Studies  in  the

Bering Sea found that  with sea-ice cover the spring blooms were

characterized by a higher proportion of diatoms, less recycling and

greater  export  and,  therefore,  stronger  pelagic-benthic  coupling

(Moran et al.  2012). In the case of open-water conditions, blooms

were characterized by a higher proportion of dinoflagellates, greater

carbon cycling in the water column and lower export to the seafloor,

and  consequently  reduced  pelagic-benthic  coupling  (Moran  et  al.

2012).

Upper trophic levels

Changes in primary and secondary production affect upper trophic

levels  and  are  predicted  to  have  increasing  impact  with  climate

warming  (Wassmann  2006;  Daufresne  et  al.  2009;  Moore  et  al.

2014). Arctic marine top predators will have to face extreme changes

in their habitat and forage base, including density and distributional

shifts  of  their  prey,  as  well  as  potential  losses  of  some  of  their

favoured lipid-rich prey species (Kovacs & Lydersen 2008; Kovacs et
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al.  2011).  Upper  trophic  levels  usually  respond  in  a  non-linear

fashion to changes in ecosystem structure and usually the response

depends on their exact position in the food web (Moore et al. 2014).

Although the resilience of Arctic top predators is largely dependent

on  an  individual's  adaptive  capacity,  in  general  their  resilience

capacity depends largely on the region, the intensity and range of ice

cover change and species characteristics (e.g., ice-obligate species

are more vulnerable than ice-associated or seasonally migrant ones

[Moore & Huntington 2008]). Sea-ice associated and seaice obligate

species such as walruses and bearded seals that use sea ice as a

platform for breeding, resting and foraging will be most affected by

changes in sea-ice cover (Laidre et al. 2008; Moore & Huntington

2008; Table 1).  Reductions in prey quality have been observed to

have ecosystem-wide effects, such as population crashes of Steller

sea lions (Eumetopias jubatus) in the Gulf of Alaska (Rosen & Trites

2000) and breeding failures of seabirds in the North Sea (Wanless et

al. 2005). A decline in spawning and foraging areas will affect both

predators and their prey. For instance, polar cod (Boreogadus saida)

abundance  might  be  significantly  reduced,  with  tremendous

consequences  to  the  entire  system as  this  species  is  believed  to

account for up to 75% of energy transfer between zooplankton and

vertebrate predators (Damis et al. 2012). In addition to changes in

resource  availability,  top  predators  will  likely  face  increased

complexity  within  food  webs  that  tend  to  dissipate  energy  flow

(W^slawski  et  al.  2009).  This will  likely be followed by increased

competition from temperate species that are expanding northward,

e.g.,  Atlantic  cod  (Gadus  morhua),  haddock  (Melanogrammus

aeglefinus) (Renaud  et  al.  2012)  and  Atlantic  mackerel  (Scomber

scombrus) (Berge et al. 2015), and increased predation from species

formerly unable to access them in areas of extensive sea-ice cover,

such  as  killer  whales  (Orcinus  orca)  (Higdon  &  Ferguson  2009),

gannets following northward move of herring and mackerel (Symon

et al. 2005), and fish-eating whales that are getting more abundant

in the Pacific Arctic  region (Grebmeier 2012;  Moore et  al.  2014).

Also,  an  increase  in  temperate  and  sub-Arctic  fish  migration  is

predicted to lead to a decrease in prey quality, since they are less

lipid- rich than Arctic species (Symon et al. 2005; Hop & Gjosaeter

2013). Additionally, increased risks of disease and contaminants may

also become an issue (Kovacs & Lydersen 2008).
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Changes in species distribution ranges mediated by

temperature

Temperature has a direct impact on metabolic and physiological

processes  as  well  as  on  the  behaviour  of  individual  organisms

(Duarte  2007;  O'Connor  et  al.  2007).  It  may  influence  growth,

survival,  reproduction,  phenology  and  recruitment  success  of

particular  species  (Lewis  1996;  Walther  et  al.  2002;  Lewis  2005;

Herbert  et  al.  2007).  Therefore,  spatial  distributions of  organisms

will likely change because of differential survival and recruitment of

pelagic  larval  stages with varying water temperatures (Sirenko &

Kolutin 1992; Blanchard et al. 2010; Grebmeier 2012). Changes in

phenology  can  lead  to  a  decoupling  of  the  dynamics  between

predator and prey that  will  further alter current trophic relations

and communities.  Some species  time their  reproductive  efforts  to

match  the  spring  algal  bloom  (Falk-Petersen  et  al.  2009),  e.g.,

females of the copepod Calanus glacialis utilize the spring pulse of

ice algae to initiate reproduction, allowing their young to feed on the

phytoplankton bloom that occurs after the breakup (Soreide et al.

2010).  Along  with  temperature  rise  and  sea-ice  reduction,  an

increase  in  small-sized  phytoplankton  cells  is  predicted  (Li  et  al.

2009) as well as a decrease in individual body size coupled with an

increase in proportion of juveniles (Daufresne et al.  2009).  At the

population level, a shift of species may be observed, e.g., large, lipid-

rich zooplankton species, such as C. glacialis and C. hyperboreus are

being replaced by the smaller boreal and lipid-poorer species C. fin

marchicus (Falk-Petersen et al. 2006).

Sea-water  temperature  rise  and  warmer  Atlantic  and  Pacific

waters  adverted  northward  also  represent  a  threat  to  Arctic

biodiversity and may further change trophic relationships and food-

web  structure.  These  changes  will  facilitate  open-water  adapted

species  and  boreal  species  to  expand  northward  and  ice-adapted

species to retract in range (e.g., Sirenko & Gagaev 2007; Hollowed

et al.) , which may lead to local extinctions, especially in the case of
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sea-ice  dependent  fauna  (Clarke  &  Harris  2003).  Changes  have

already been observed, including a northward distributional shift of

fish and invertebrates in the Bering Sea (Mueter & Litzow 2008) and

in  the  North  Atlantic  (Wienerroither  et  al.  2011),  penetration  of

Pacific  clams  into  the  Chukchi  Sea  (Sirenko  &  Gagaev  2007),

reoccurrence of Atlantic mussels in Svalbard (Berge et al. 2005), and

Pacific  zooplankton  northward  movement  into  the  Beaufort  Sea

(Nelson et al. 2009). Also, an increase in year-round resident species

may occur, e.g., grey whales that usually migrate south may stay in

the Bering and Chukchi seas longer because of expanded open-water

feeding areas and warmer water temperature (Moore & Huntington

2008).

Sea-ice gradient: scenarios and trends

Since  sea-ice  retreat  is  probably  the  most  critical  of  expected

consequences of climate warming for the Arctic marine ecosystems,

in  this  review three  regional  ecosystem case  studies  are  used  to

conceptualize possible changes in food-web structure and efficiency

along  a  sea-ice  gradient:  the  seasonally  ice-free  Barents  Sea  and

Chukchi Sea, the loose ice pack PF and MIZ and the permanently

ice-covered  High  Arctic  (Table  2,  Fig.  2a,  b).  In  general,  the

described scenarios refer to current or possible future conditions on

the shelves. The Barents and Chukchi seas were chosen as two case

studies as

Table 2 Number of food-web studies undertaken in the Arctic by

area.  Data  were  collected  using  the  search  terms  "Arctic"  and

"marine"  and  "food  web"  on  the  Web  of  Science.  Studies  that

examined the relationship between two or more trophic levels were

retained.  Reviews  and  modelling  with  no  in  situ  studies  were

excluded.

Area Number of studies

Barents Sea 18

Bering Sea 17

Beaufort Sea 44

Canadian Arctic 69

Central Arctic Ocean 7
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Chukchi Sea 16

Greenland Sea 23

Labrador Sea 61

Laptev Sea 1

Svalbard 45

White Sea 1

Yermak Plateau 2

Total 304

the food webs and associated trophic relations there are relatively

well-studied (e.g., Iken et al. 2010; Feder et al. 2011; Renaud et al.

2011; Dunton et al. 2012; Grebmeier 2012; Kydra et al. 2012; Nelson

et al. 2014; Table 2, Fig. 2). PF and MIZ are highly productive zones,

which are likely to change their locations, extents and features as

the ice edge retreats from the coast and continental shelves (Fig. 2).

Arctic deep-sea regions represent a large part of the Arctic Ocean

susceptible to change due to fast sea-ice retreat, yet studies of deep

benthic  food  webs  are  scarce  (Bergmann et  al.  2009;  Iken  et  al.

2010; van Oevelen et al. 2011; Table 2). hi all three case studies, the

scale  and  the  extent  of  response  to  climate  change  and  sea-ice

retreat remain largely unknown.

Arctic shelf: seasonally ice-free—Barents and

Chukchi seas

Many  Arctic  shelf  systems  are  characterized  by  high  benthic

biomass and production especially in areas of inflow of Atlantic or

Pacific nutrient-rich water  masses,  and along the PF (Carmack &

Wassmann 2006; Grebmeier, Cooper et al. 2006; Renaud, Morata et

al. 2008; Fig. 2a). On the south-eastern Chukchi Sea shelf, primary

production  can  exceed  430  g  C  m
-2

 y
-1

 (Springer  et  al.  1996;

Sakshaug 2004; Lee et al. 2007); the Barents Sea has an estimated

overall average annual primary productivity of about 100 g C m
-2

 y
-1

and up to 300 g C m
-2

 y
-1

 in shallow banks (Sakshaug et al. 2009).

Typically,  about 44-67% of primary production in the Barents Sea

reaches the seafloor (Wassmann, Reigstad et al.  2006; Wassmann,
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Slagstad et al. 2006) while it is up to 70% in the Chukchi Sea (Walsh

et  al.  1989).  Unlike  the  Chukchi  Sea,  the  Barents  Sea  supports

immense fisheries and a high density of cetaceans. Pelagic foraging

pisdvores and nesting seabirds are twice as abundant in the Barents

Sea than in the Chukchi Sea (Hunt et al. 2013). In the Barents Sea,

seasonally resident cetaceans are four to five times more abundant

than in the Chukchi Sea. On the other hand, the density of pinnipeds

and benthic-foraging whale species in the Chukchi is twice that of

the  Barents  Sea,  indicative  of  the  Chukchi  Sea  being  more  of  a

benthic-driven  system  than  the  Barents  Sea  (Hunt  et  al.  2013).

Indeed, Chukchi soft sediment infaunal and epifaunal communities

are among the most productive in the world, reaching up to 50-100 g

C  m
-2  

or  up  to  ca.  4  kg  wet  wt  m
-2

 (Grebmeier  et  al.  1988;

Grebmeier,  Overland et  al.  2006;  Feder et  al.  2007),  while  in  the

most  productive  areas  of  shallow  banks  in  the  Barents  Sea  the

benthic fauna reaches up to 30 g C m
-2 

or 1.5 kg wet wt m
-2

 (K^dra

et al. 2013).

The ice edge is retreating northwards and, in the near future, ice-

free summers and seasonal ice cover in winter may become typical

for  the  shelf  seas  (Fig.  2b).  Increases  in  primary  production  and

phytoplankton  biomass  are  predicted,  as  well  as  have  been

measured, as a consequence of sea-ice retreat and temperature rise
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(Gradinger  1995;  Arrigo  et  al.  2008;  Arrigo  &  van  Dijken  2011;

Wassmann  &  Reigstad  2011).  Moreover,  increased  advection  of

Atlantic and Pacific waters into the Arctic Basin in the last decade

(Walczowski  & Piechura  2006;  Woodgate  et  al.  2006;  Piechura  &

Walczowski  2009;  Woodgate  et  al.  2010;  Walczowski  et  al.  2012)

resulted in a 30% local increase of total primary productivity due to

a greater proportion of smaller boreal planktonic species (Leu et al.

2011). Apart from quantitative changes in primary production, the

quality  and  seasonality  of  primary  production  are  expected  to

change because of the earlier onset of ice melt. Various stages of the

reproductive  cycle  or  increased  activity  of  some  Arctic  benthic

animals are timed to coincide with peak periods of organic matter

deposition  (Blake  1993;  Renaud  et  al.  2007),  so  any  change  in

seasonality, quantity or quality of food input may create a mismatch

with faunal reproductive cycles (Renaud, Carroll et al. 2008). A shift

from a benthic- oriented ecosystem with relatively low zooplankton

stocks and strong pelagic-benthic coupling to a system dominated by

pelagic food webs has already occurred in the northern Bering Sea

in 1970s and 1980s (Overland & Stabeno 2004; Grebmeier, Overland

et al. 2006) and benthic productivity has been decreasing over the

past two decades in the northern Bering and southern Chukchi seas

(Moore  et  al.  2003;  Grebmeier,  Overland  et  al.  2006;  Grebmeier

2012).

Loose ice pack—MIZ and PF

A significant  feature  of  the  recent  (2007-2012)  decrease  in  ice

extent has been the retreat of the ice edge away from the coast and

continental shelves. One of the most obvious impacts has been the

northward  expansion  and  widening  of  the  MIZ,  a  dynamic  and

biologically active band of sea-ice cover adjacent to the open ocean

(Strong & Rigor 2013). MIZ width is a fundamental feature for polar

ecosystem functioning and climate dynamics (Wadhams 2000). It is

an interfacial region that forms at the boundary of open and frozen

ocean and protects the stable morphology of the inner ice from wave

penetration (Squire 2007). In the MIZ, interactions between sea-ice

and the open sea result in modification of the properties of the ice

compared to areas deeper within the pack (Weeks 2010). Significant

forcing that impacts the sea ice in the MIZ results in varying surface

roughness (Gupta et al. 2014), which affects prevalent physical and

biological processes in the MIZ, such as wave dynamics (Wadhams et

al. 1988; Squire et al. 1995), heat (Perovich et al. 1989), salt fluxes

(McPhee et al.) and floe size distribution (Lu et al. 2008). It can also
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create  potential  habitats  for  organisms  inhabiting  the  ocean-ice

system (e.g., Arctic cod [Fortier et al. 2006]). Properties of the MIZ

relative  to  neighbouring ice  pack can markedly  affect  the  carbon

cycle  and  behaviour  of  microorganisms  and  top-level  predators

(Dunbar & Leventer 1987; Arrigo et al. 2012). The MIZ has been a

long-standing feature in many Arctic shelf seas, like in the Bering,

Chukchi and Barents seas, but is a relatively new phenomenon in

higher latitude regions such as the deep Beaufort Sea and Canada

Basin (Shimada et al.  2006).  The MIZ is  advancing poleward into

regions where sea ice has become increasingly younger and thinner

at the beginning of the annual melt (Strong & Rigor 2013). At the

time of minimum sea-ice extent in September,  the sea-ice edge is

located  over  the  deep  Arctic  Ocean,  exposing  large  areas  of

previously permanently ice- covered waters, and MIZ-type conditions

are  becoming  more  prevalent  in  the  High  Arctic  with  the

advancement of climate change.

Loss of sea ice will likely change the amount and characteristics of

primary production in the MIZ (Bluhm & Gradinger 2008; Fig. 2b).

Increased summer sea-ice melt will increase the overall extent of the

MIZ  over  the  shelves  and  lead  to  increased  primary  productivity

(Anderson & Kaltin 2001). However, export fluxes largely depend on

the coupling processes in the water column, including grazing, and

therefore may not increase with warmer temperatures, especially in

deep  areas  (Forest  et  al.  2010).  Even  if  primary  production

increases, the fate of export fluxes will be different on Arctic shelves

and over the deep Arctic Ocean (Lalande et al. 2014). It is likely that

particulate organic carbon export will remain low above the central

basins  unless  additional  nutrients  are  supplied  to  surface  waters

(Codispoti  et  al.  2013;  Lalande  et  al.  2014).  Decreased export  of

diatoms, and dominance of coccolithophores were observed in Fram

Strait during the warm period of 2005-07 (Bauerfeind et al. 2009;

Lalande  et  al.  2013).  Warmer  water  temperature  also  resulted  in

lower export fluxes of  smaller zooplankton faecal pellets due to a

shift  in  zooplankton  community  composition  towards  small-sized

zooplankton  species  or  a  shift  in  phytoplankton  composition  that

affected grazing and faecal pellet production (Lalande et al. 2013).

However, over the shelves, increased primary productivity will likely

supply more food to pelagic and benthic consumers, while the low-

productivity zone of the multi-year sea ice would shrink (Bluhm &

Gradinger  2008).  Sea-ice  retreat  off  the  shelves  may  result  in

upwelling of nutrients or planktonic prey from the basins onto the

shelves  (Carmack  et  al.  2004).  Based  on  the  inorganic  carbon

Monika Ke ̨dra, Charlotte Moritz и другие.
"Status and trends in the structure of Arctic
bent…"  

 

19



availability, Anderson & Kaltin (2001) proposed a possible increase

of up to 50 g C m
-2

 integrated over the upper 100 m of the water

column across  the Eurasian Basin,  mainly  as  a  result  of  ice  loss.

Nevertheless, it is the availability of nutrients, mainly nitrogen and

phosphorous, that ultimately determines the total amount of primary

productivity possible in any given ocean (Codispoti et al. 2013).

With reduced ice cover,  ice-edge algal  blooms will  be displaced

progressively  northwards.  Although  benthic  communities  will  still

receive  high-quality  food  in  the  short  term,  if  the  sea-ice  edge

retreats  past  the  shelf  break,  shelf  communities  will  no  longer

benefit from this  early season food source (Renaud,  Carroll  et  al.

2008) which would result in increased food input to slope and deep-

sea communities (Carmack & Chapman 2003). Since it is likely that

at least a part of deep-sea fauna originates from shelf species and

Arctic shelf and deep- sea taxa largely overlap (Bluhm, Ambrose et

al. 2011), some shelf species would be able to dwell in the deep sea.

If shelf species were unable to leave the slopes or survive in slope or

deep-sea  habitats,  many  Arctic  shelf-benthos  taxa  could  become

locally extinct (Renaud, Carroll  et al.  2008). Changes in under-ice

community  structure  were  noticed  in  the  Eurasian  Basin  in

geographically close sampling locations collected within short time

intervals. Habitat partitioning between sympagic and pelagic species

can  be  abrupt,  creating  small-scale  patterns  in  the  surface  layer

community according to sea-ice habitat conditions. The difference in

ice coverage was accurately mirrored by a conspicuous dominance

of  the  ice-  associated  amphipod  Apherusa  glacialis in  ice-covered

waters,  versus  a  dominance  of  the  pelagic  amphipod  Themisto

libellula in the surface community of ice-free waters (Koszteyn et al.

1995; Hop & Pavlova 2008; David et al. 2015).

Fronts  are regions characterized by narrow bands of  horizontal

gradients in temperature, salinity, density and biological properties

that separate broader areas of different vertical structure (Mann &

Lazier 1996; Belkin et al. 2003). In the Barents Sea, the PF separates

warmer, more saline Atlantic waters in the south from colder, less

saline Arctic water in the north (Loeng 1991). Fronts can

play a role in setting surface layer properties by restratifying the

surface layer (Timmermans & Winsor 2013) and thereby enhancing

primary production. Fronts are known to support elevated biomasses

of  phytoplankton  (Iverson  et  al.  1979),  planktonic  organisms

(Basedow  et  al.)  and  hyper-benthic  communities  (Dewicke  et  al.

2002) as well as bird and mammal aggregations (Bluhm et al. 2007).

However,  a  recent  study  of  the  PF  in  the  Barents  Sea  found  no
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stimulatory effect on this front on primary production, and this result

is attributed to this front being weak in terms of density (Erga et al.

2014). A related study found high secondary production at the PF,

but also in surrounding waters (Basedow et al. 2014). Along with sea

temperature  rise  and  increased  advection  of  Atlantic  or  Pacific

waters into the Arctic Ocean, characteristics and location of PF are

likely to change, influencing energy transfer to higher trophic levels.

Northward displacement of the PF in the Barents Sea was predicted

from coupled biophysical model for a B2 Intergovernmental Panel on

Climate  Change  scenario  (Huse  &  Ellingsen  2008).  Simulations

showed that PF displacement in the Barents Sea had an impact on

the  distribution  and  spawning  of  capelin  (Mallotus  villosus). The

model  predicted  increased  production  and  large  interannual

variability in the Barents Sea, characteristic for the MIZ (Wassmann

et al. 2010).

Permanent ice cover—high Arctic

We have only limited knowledge of  the energy flow and trophic

structure of Arctic deep-sea regions. Very little is known about the

linkages  of  the  seasonal  production  pulse  to  the  deep-sea

communities  in  the  High  Arctic  or  even  about  the  deep-sea

communities themselves. Therefore, many of the assumptions made

for shelf Arctic systems may not be valid for the central Arctic. The

few available studies from the central Arctic report extremely low

species richness and biomass (Kroncke 1994, 1998) for meiofaunal

(Vanreusel et al. 2000) and macrofaunal taxa (Kroncke 1994, 1998;

Clough et al. 1997; Deubel 2000; Bluhm et al. 2005; Bluhm, Ambrose

et al. 2011), as well as a decrease in diversity with increasing water

depth  (Kroncke  et  al.  1998).  Primary  productivity  in  the  central

Arctic is limited by light and nutrients. Constrained by light, sea-ice

algal primary production occurs only from May to August and may

be further restricted by ice thickness and snow cover (Rysgaard et

al. 2001; Nicolaus et al. 2012). Nutrient supply on the other hand is

constrained by stratification (Bourgain & Gascard 2011) and may not

be sufficient in the central Arctic (Tremblay et al. 2008). Estimated

average primary production in the ice-covered central Arctic is low,

on the order of 1 to 25 g C m
-2

 y
-1

 (Wheeler et al. 1997; Wassmann

et al. 2010), with ice algae production contributing from 0 to 80%

(Gosselin  et  al.  1997;  Wassmann  et  al.  2008).  Bauerfeind  et  al.

(2009)  suggested  very  efficient  processing  of  carbon  within  the

water  column,  with  <10%  of  primary  production  reaching  the
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seafloor in the deep sea (Fram Strait). Low primary production and

export  flux  result  in  low abundance  of  suspension  feeders  in  the

deep  basins  (Kroncke  et  al.  1998)  and  a  dominance  of  deposit

feeders (van Oevelen et al. 2011). However, suspension feeders in

the deep sea are known to utilize re-suspended material and directly

compete with deposit feeders on the scarce food available (Lampitt

et al. 1993; Iken et al. 2001). Although most benthic species in the

deep  sea  seem  to  be  able  to  cope  with  refractory  material  (van

Oevelen  et  al.  2011),  fresh  phytodetritus  may  also  arrive  to  the

seafloor and support suspension feeders and surface deposit feeders

such as  cumaceans (Iken et  al.  2005).  Also,  Boetius  et  al.  (2013)

reported fast  response to  Melosira falls  of  opportunistic  deep-sea

megafauna species, such as the holothurians Kolga hyalina and Elpi

dia  heckeri, and  the  ophiurid  Ophiostriatus  striatus. Increased

sediment  respiration  rates  showed  that  sediment  bacteria  also

profited  from  this  ice  algae  deposition  (Boetius  et  al.  2013).

However,  infauna  were  probably  unable  to  utilize  ice  algae  as

infaunal  burrows  and  tubes  were  rarely  seen  in  the  under-water

video footage, although they are common in other deep-sea basins

with  seasonally  sedimenting  phytoplankton  blooms  (Boetius  et  al.

2013).  In  the  Arctic  deep-sea  plains,  benthic  communities  are

constrained by strong seasonality and limited food supply (Iken et al.

2005); ice algae production related to permanent sea-ice cover and

export  fluxes  of  organic  matter  to  the  seafloor  are  therefore

important in these ecosystems. Benthic trophic pathways in the deep

Arctic Ocean are longer than on the shelf region or in the temperate

deep  sea  owing  to  the  continuous  recycling  and  thus  isotopic

enrichment  of  food particles  in  the benthic  system,  while  a  more

direct link to fresh phytodetritus exists in the pelagic system (Iken et

al. 2005; Bergmann et al. 2009).

In the past, the central Arctic Ocean has been covered with multi-

year ice, but the marked decline in multi-year ice (Maslanik et al.

2011) suggests that the region could be ice-free by the summer of

2040  (Polyakov  et  al.  2010).  Moreover,  according  to  the  latest

publications,  the  central  Arctic  Ocean  is  no  longer  covered  with

multi-year ice (Polyakov et al.  2012) while the remnant multi-year

sea  ice  occurs  along  the  north-west  flank  of  the  Canadian  Arctic

Archipelago, where it can drift southwards, out over the Southern

Beaufort Sea and northwards (Barber et al. 2009). If we assume that

areas formerly covered

with thick multi-year ice will  have a thinner ice cover,  permitting

higher primary production, we can project a higher annual primary
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production  level  due  to  light  availability,  provided  nutrients  are

available, which may not be the case in the basins (Codispoti et al.

2013; Matrai et al. 2013). A massive under-ice bloom was reported

recently  from consolidated ice pack in the northern Chukchi  Sea,

with  phytoplankton  biomass  beneath  the  ice  being  about  fourfold

greater  than  in  open  water  (Arrigo  et  al.  2012).  Similar  massive

blooms might be widespread in the Arctic Ocean, in relation to the

lower nutrient levels available. More work is needed to determine

the extent to which such blooms are controlled by thinning sea ice

and proliferating melt  pond fractions  and how they affect  marine

ecosystems.

Although higher light penetration will  promote ice algal growth,

low level  of  nutrients  available  and  progressing  climate  warming

may also reduce the algal growing season through increased thermal

or  haline  stratification,  limiting  mixing  and  upward  nutrient

transport resulting in smaller export flux to the seafloor (Carmack &

Wassmann 2006; Slagstad et al.  2011). In addition, if  zooplankton

abundance  increases  as  warmer  Atlantic  and  Pacific  waters  are

transported into the Arctic Ocean (Hirche & Kosobokova 2007), the

grazing  pressure  will  increase,  leading  to  increased  retention  of

organic carbon in the water column. Some studies suggest that the

flux  of  ice  algae  and  ice-related  particulate  organic  matter  will

decrease along with sea-ice retreat and loss of multi-year ice (Forest

et al.  2010). This may lead to decreased carbon deposition at the

deep seafloor to already food-limited fauna, but these shifts are not

expected  to  be  rapid  (van  Oevelen  et  al.  2011).  Yet,  the  lack  of

reliable  baseline  information  makes  predictions  difficult  and

identifying change nearly impossible (Wassmann et al. 2011).

Gaps and recommendations

Despite  numerous  recent  studies  (Table  2,  Fig.  1),  major  gaps

remain in the knowledge of general processes governing biodiversity,

food-web  structure,  trophic  transfer  efficiency  and  functioning  of

Arctic  ecosystems.  Since  different  regions  of  the  Arctic  have

received varying levels of scientific attention (Table 2, Fig. 1), these

recommendations may not apply to the whole Arctic and should be

treated as more general statements. Given that these processes are

not yet clearly quantified, any attempt to project changes that may

occur in Arctic food webs in the future, such as that suggested in

this  review,  should  be  taken  cautiously.  Most  predictions  are

qualitative  and  biased  towards  conditions  on  the  shelves,  while

quantitative ones remain scarce (but see Zhang et al. 2010; Popova
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et al. 2012; Slagstad et al. 2011). Since a lot of changes in the Arctic

food webs are expected to be driven by a shift from decreasing sea-

ice  algae  and  an  increase  in  pelagic  production,  observational,

experimental and modelling approaches of the present-day coupling

of  these  two  production  pathways  in  food  webs  should  first  be

implemented,  and  subsequently  combining  different  scientific

methods will allow for the establishment of projection methodologies

for Arctic ecosystems.

Large-scale studies of food webs across Arctic regions highlighting

inherent differences among regions are still lacking. Although deep-

sea  areas  are  still  under-sampled  because  of  the  difficulty  in

accessing field sites, and a consistent sampling design does not exist

Arctic-wide, the lack of sampling is not the main issue. Throughout

the years data on the response of different benthic communities to

climate  change  and  on  food  webs  have  increased  from  multiple

projects.  These  include  HAUSGARTEN,  the  Alfred  Wegener

Institute's  long-term  monitoring  programme  in  Fram  Strait

(Soltwedel et al. 2005), with data over 10 years, and the Distributed

Biological  Observatory  (DBO),  an  international  initiative  in  the

Pacific  Arctic  (Grebmeier  et  al.  2010),  with  data  over  30  years,

including  time  series  from  Long-term  Census  of  the  Arctic

(RUSALCA) programme. While efforts  to sample the Arctic  Ocean

must  and  will  continue,  a  primary  ambition  should  be  to  gather,

combine and analyse existing information.  Such efforts have been

undertaken  recently  regarding  Arctic  biodiversity  (e.g.,  Bluhm,

Ambrose et al. 2011; Gill et al. 2011; Piepenburg et al. 2011), food

sources  and  trophic  interactions,  e.g.,  the  Pacific  Marine  Arctic

Regional Synthesis project (PacMARS), although consistent data on

food  webs  (sensu  species  interactions)  are  still  missing.  Similar-

format databases should be established, centralized and made easily

accessible to scientists at the international level, in order to explore

the issues mentioned in this  review,  such as the PacMARS effort.

Then,  to  promote  further  consistency  of  data  collection,  a

standardized data sampling protocol should be implemented when

possible  to  facilitate  data gathering and data set  use.  Designated

sampling stations should be sampled throughout months and years

to monitor seasonal and long-term changes in biodiversity (Gill et al.

2011). Apart from species identity, functional lifestyle and life-cycle

traits  should  be  recorded,  which  would  allow  detecting  and

monitoring changes in ecosystem functioning (Cadotte et al. 2011).

To  complement  field  sampling  and  database  design,  empirical

manipulations to be performed in situ, in several places in the Arctic,
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should  be  encouraged.  Such  studies  should  address  quantitative

aspects  of  the  impact  of  global  warming on  food-web length  and

components, including primary production rates, grazing rates and

growth rates at higher trophic levels, in order to estimate changes in

trophic  transfer  efficiency  in  Arctic  food  webs.  Studies  of  diets

relative to availability of different foods are also critical to food-web

analyses, especially to predicting response to changing conditions. In

situ and laboratory experiments could be complemented by use of

numerical modelling. Trophic network modelling methods that are

widely used in other ecosystems could be implemented in the Arctic

to  understand  food-web  structure,  the  effects  of  external  threats

(e.g.,  increased  fisheries  pressure,  invasive  species)  on  food-web

dynamics, and to quantify energy transfers between trophic levels, in

conjunction  with  empirical  work  (e.g.,  van  Oevelen  et  al.  2011).

Results  can  be  subsequently  used  to  fuel  models  (e.g.,  provide

nutrient-phytoplankton-zooplankton  model  parameters).  Since  data

are  still  lacking,  this  could  be  achieved by  using well-established

predesigned software able to deal with missing parameters such as

Ecopath (Pauly et al. 2000), especially for fishery scenarios, and the

linear  inverse  model  package  LIM  in  the  R  statistical  software

package (van Oevelen et al. 2010). These models have the advantage

of including both pelagic and benthic compartments and are able to

quantify  the  strength  of  pelagic-benthic  coupling.  Although  such

models have been implemented for some Arctic regions (e.g., Trites

et al. 1999; Dommasnes et al. 2001; Pedersen & Zeller 2001; Aydin

et  al.  2002;  Whitehouse  et  al.  2014),  they  need  to  be  updated,

integrated and compared, especially after the recent environmental

changes that have occurred in the Arctic. Stability analysis methods

can also be coupled with the mass-balance modelling framework to

provide  insights  into  Arctic  food-web  structure  and  intrinsic

properties  (Neutel  et  al.  2002).  Such  methods  may  comprise

analyses of stable-states of population or community dynamics, and

analyses  of  food-web  properties  through  determination  of

eigenvectors,  resilience  and  persistence  levels,  and  equilibrium

shifts.  At  the  theoretical  level,  population,  metapopulation,

community  and  metacommunity  dynamic  models  can  be

implemented to understand how intra- and interspecific interactions

and connectivity affect diversity at different spatial scales, such as

between  the  different  Arctic  regions  and  the  surrounding  oceans

(Carr  et  al.  2011;  Hardy  et  al.  2011).  Predicted  ice  melt  and

changing  hydrodynamics  may  alter  connectivity  between  distant

Arctic  populations,  in  turn  affecting  community  composition  and
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food-web  structure.  Such  advances  could  provide  valuable

contributions to  predicting future trends of  biodiversity  and food-

web structure in the Arctic.

Statistical  modelling,  particularly  quantification  of  species-

environment relationships at large scales, should be assessed once

data  are  pooled  across  Arctic  regions.  The  statistical  methods

developed to date and applied to different biological organisms are

an  efficient  means  to  disentangle  the  effects  of  environmental

gradients (both in space and time) on community structure (Dray et

al. 2012). Even though these methods are often based on species,

they can be applied to functional groups to assess trait-environment

relationships, reinforcing the need to monitor species traits during

field sampling. Since environmental changes in the Arctic may affect

species traits, the whole ecosystem functioning may be altered, and

studying  functional  traits  is  a  good  way  to  assess  ecosystem

functioning  and  trophic  transfer  efficiency  (McGill  et  al.  2006;

Cadotte et al. 2011).

Conclusions: winners and losers

Arctic marine ecosystems are currently subjected to accelerating

climate warming and fast progressing sea-ice retreat. Although our

knowledge  of  ecosystem  functioning  and  processes  still  has

significant  gaps,  and  the  scale  and  magnitude  of  climate  change

remain largely unknown, some qualitative predictions on the fate of

Arctic marine food webs are possible. In very general terms, among

the "winners" will likely be boreal species as their populations tend

to  follow  increasing  sea  temperature  by  shifting  their  ranges

northward  (and  likely  losing  ground  in  the  south),  and  pelagic

species,  mainly  zooplankton,  whose  abundance  and  biomass  may

increase with increasing water column primary production related to

more and earlier open water over the Arctic shelves. Pelagic feeding

animals,  like  some  fish,  marine  mammals  and  seabirds  may

consequently  increase  in  abundance.  Species  classified  as

generalists  are  more  likely  to  adapt  to  new  conditions  than

specialists.

Groups  that  will  likely  be  among  the  "losers"  include  Arctic

species, especially those that are ice-dependent, as they will be most

strongly  affected  by  rising  temperatures  and  diminishing  habitat.

Benthic  species  may  decrease  in  biomass  with  increased  pelagic

grazing  and  recycling  in  the  water  column,  which  may  lead  to

reduced amount or quality of organic matter settling from the water
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column  to  the  seafloor.  This  will  affect  benthic  feeding  marine

mammals  and  seabirds,  whose  foraging  areas  will  become  less

productive and prey less available. Food webs will likely lengthen at

the  low  trophic  levels,  lowering  trophic  transfer  efficiency  and

thereby lowering the percentage of primary production that reaches

top predators.  Since many species  at  the base of  the Arctic  food

webs are seaice dependent, the stability of food webs will likely be

negatively  affected  in  areas  where  trophic  redundancy  is  low.

Collaborative multidisciplinary research is necessary

if  we are to fully understand the processes and linkages between

Arctic marine environments and their associated food webs in the

face of a changing North.
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